Abstract
It is well-known that the super-sensitivity of phase estimation in two-photon interferometery is diminished by the effect of decoherence. Specific to the paradigm of local phase estimation, any presence of decoherence removes all sensitivity to small shifts in the neighborhood of certain phases. For estimates of the phase difference between two arms of an interferometer using two-photon coincidence measurements, all sensitivity is lost for phase differences in the neighborhood of π/2. The benefit of employing an ancillary optical degree of freedom alongside the principal interfering degree of freedom was recently found to fortify super-sensing two-photon states against the debilitating effect of spectral distinguishability: an effect that reduces the visibility of two-photon interference. In the present work, we investigate the use of an ancillary degree of freedom when measuring a phase shift by use of a two-photon Mach-Zehnder-interferometer contaminated by a depolarizing channel causing decoherence: an effect that reduces both two-photon and single-photon interference visibility. We model our input state as single photons entering both input ports of an interferometer. The principal interferometer-path modes are coupled to polarization, and decoherence is modeled by replacing the density matrix describing this input with a maximally mixed state with some probability p. We calculate the sensitivity through the quantum fisher information, finding that the process of fortifying input states retains sensing at or above the standard quantum limit in the neighborhood of phase differences around π/2, for all probabilities below 1/4 — an advantage impossible without employing the ancillary degree of freedom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.