Abstract

Novel developmental programs often evolve via cooption of existing genetic networks. To understand this process, we explored cooption of the TAS3 tasiRNA pathway in the moss Physcomitrella patens. We find an ancestral function for this repeatedly redeployed pathway in the spatial regulation of a conserved set of Auxin Response Factors. In moss, this results in stochastic patterning of the filamentous protonemal tissue. Through modeling and experimentation, we demonstrate that tasiRNA regulation confers sensitivity and robustness onto the auxin response. Increased auxin sensitivity parallels increased developmental sensitivity to nitrogen, a key environmental signal. We propose that the properties lent to the auxin response network, along with the ability to stochastically modulate development in response to environmental cues, have contributed to repeated cooption of the tasiRNA-ARF module during evolution. The signaling properties of a genetic network, and not just its developmental output, are thus critical to understanding evolution of multicellular forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.