Abstract
BackgroundLignin plays an important role in plant structural support and water transport, and is considered one of the hallmarks of land plants. The recent discovery of lignin or its precursors in various algae has raised questions on the evolution of its biosynthetic pathway, which could be much more ancient than previously thought. To determine the taxonomic distribution of the lignin biosynthesis genes, we screened all publicly available genomes of algae and their closest non-photosynthetic relatives, as well as representative land plants. We also performed phylogenetic analysis of these genes to decipher the evolution and origin(s) of lignin biosynthesis.ResultsEnzymes involved in making p-coumaryl alcohol, the simplest lignin monomer, are found in a variety of photosynthetic eukaryotes, including diatoms, dinoflagellates, haptophytes, cryptophytes as well as green and red algae. Phylogenetic analysis of these enzymes suggests that they are ancient and spread to some secondarily photosynthetic lineages when they acquired red and/or green algal endosymbionts. In some cases, one or more of these enzymes was likely acquired through lateral gene transfer (LGT) from bacteria.ConclusionsGenes associated with p-coumaryl alcohol biosynthesis are likely to have evolved long before the transition of photosynthetic eukaryotes to land. The original function of this lignin precursor is therefore unlikely to have been related to water transport. We suggest that it participates in the biological defense of some unicellular and multicellular algae.ReviewersThis article was reviewed by Mark Ragan, Uri Gophna, Philippe Deschamps.
Highlights
Lignin plays an important role in plant structural support and water transport, and is considered one of the hallmarks of land plants
Previous research has focused on lignin biosynthesis in Arabidopsis [29,30,31,32] and other model land plants [2,19,33,34,35], so only representative species of this group have been included in our search
All the lignin biosynthesis genes were found in all land plants for which genomes are available, with the exception of ferulate 5-hydroxylase (F5H), which is absent from the only bryophyte in our dataset, Physcomitrella patens [7]
Summary
Lignin plays an important role in plant structural support and water transport, and is considered one of the hallmarks of land plants. The recent discovery of lignin or its precursors in various algae has raised questions on the evolution of its biosynthetic pathway, which could be much more ancient than previously thought. Lignin is a complex and highly recalcitrant form of carbon often thought to be one of the key innovations of land plants, allowing the movement of plants from aquatic habitats to terrestrial ecosystems [1,2]. It is the second most abundant biopolymer on earth, after cellulose [3]. The lignin specific pathway uses p-coumaroylCoA to produce the simplest monolignol, H monolignol (p-coumaryl alcohol), through a series of reduction
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.