Abstract
Understanding the origins of flower colour signalling to pollinators is fundamental to evolutionary biology and ecology. Flower colour evolves under pressure from visual systems of pollinators, like birds and insects, to establish global signatures among flowers with similar pollinators. However, an understanding of the ancient origins of this relationship remains elusive. Here, we employ computer simulations to generate artificial flower backgrounds assembled from real material sample spectra of rocks, leaves and dead plant materials, against which to test flowers' visibility to birds and bees. Our results indicate how flower colours differ from their backgrounds in strength, and the distributions of salient reflectance features when perceived by these key pollinators, to reveal the possible origins of their colours. Since Hymenopteran visual perception evolved before flowers, the terrestrial chromatic context for its evolution to facilitate flight and orientation consisted of rocks, leaves, sticks and bark. Flowers exploited these pre-evolved visual capacities of their visitors, in response evolving chromatic features to signal to bees, and differently to birds, against a backdrop of other natural materials. Consequently, it appears that today's flower colours may be an evolutionary response to the vision of diurnal pollinators navigating their world millennia prior to the first flowers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.