Abstract

Although it is well known that any material degrades faster when exposed to an aggressive environment as well as that "aggressive" cannot be univocally defined as depending also on the chemical-physical characteristics of material, few researches on the identification of the most significant parameters influencing the corrosion of metallic object are available.A series of ancient coins, coming from the archaeological excavation of Palazzo Valentini (Rome) were collected together with soils, both near and far from them, and then analysed using different analytical techniques looking for a correlation between the corrosion products covering the coins and the chemical-physical soil characteristics. The content of soluble salts in the water-bearing stratum and surfacing in the archaeological site, was also measured.The obtained results stress the influence of alkaline soils on formation of patina. Cerussite, probably due to the circulation of water in layers rich in marble and plaster fragments, was the main corrosion product identified by X-ray Diffraction (XRD). Copper, lead and vanadium were found in soil surrounding coins. By measuring conductivity, pH and soluble salts content of the washing solutions from both coins and soils, we could easily separate coins coming from different stratigraphic units of the site.Data were treated by cluster and multivariate analysis, revealing a correlation between part of the coins and the nearby soil samples.

Highlights

  • Coins are important evidence in terms of history, art and economy

  • Analyses of coins and soil samples by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy (SEM/EDS) detected both typical soil elements (Mg, Al, Si, P, Na, K, S, Ti) and alloy constituents [10]

  • Vanadium was present in the patina of all coins, while the same element occurred only in some cases on the soil samples, gathered both far and near the analyzed coins

Read more

Summary

Introduction

Coins are important evidence in terms of history, art and economy. Besides the composition of the alloy, what is usually revealed by written documents appears in form of effigies, short inscriptions and symbols useful. In order to obtain information on the corrosion process on buried coins, we used non invasive and mini-invasive analytical techniques on a series of Roman bronze coins (from Palazzo Valentini, Rome, Italy) and associated soil samples, taken both near and far from the find spots of the coins, but anyhow in the same archaeological area [9].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call