Abstract

Dorsoventral asymmetry in flowers is thought to have evolved many times independently as a specialized adaptation to animal pollinators [1, 2]. To understand how such a complex trait could have arisen repeatedly, we have compared the expression of a gene controlling dorsoventral asymmetry in Antirrhinum with its counterpart in Arabidopsis, a distantly related species with radially symmetrical flowers. We found that the Arabidopsis gene is expressed asymmetrically in floral meristems, even though they are destined to form symmetrical flowers. This suggests that, although the flowers of the common ancestor were probably radially symmetrical, they may have had an incipient asymmetry, evident at the level of early gene activity, which could have been recruited many times during evolution to generate asymmetric flowers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.