Abstract

AbstractPlatinum (Pt)‐based electrocatalysts are the benchmark catalysts for hydrogen evolution reaction (HER); however, they are limited by the scarcity and high price. Introducing an adequate substrate to disperse and anchor Pt‐based species is a feasible pathway to improve the utilization efficiency. Herein, a quick and continuous spray drying route is proposed to fabricate 3D crumpled Ti3C2Tx MXene loaded with sub‐nanometer platinum clusters (Pt/MXene). The 3D crumpled structure inhibits the restacking of layered MXene nanosheets and guarantees the fully exposure of Pt clusters. The as‐prepared catalyst exhibits excellent HER performances comparable to commercial Pt/C, including a low overpotential of 34 mV to reach a current density of 10 mA cm−2, a superior mass activity (1847 mA mgPt−1), a small Tafel slope (29.7 mV dec−1), and a high turnover frequency (10.66 H2 s−1). The improved activity of Pt/MXene can be attributed to the charge transfer from Pt clusters to MXene, which weakens the hydrogen adsorption, as evidenced by the density functional theory calculations. The present contribution proposes a novel strategy to anchor low‐mass‐loading sub‐nanometer precious metal clusters on crumpled MXene with fully exposed active sites for catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.