Abstract

AbstractAlthough the carbon‐supported single‐atom (SA) electrocatalysts (SAECs) have emerged as a new form of highly efficient oxygen reduction reaction (ORR) electrocatalysts, the preferable sites of carbon support for anchoring SAs are somewhat elusive. Here, a KOH activation approach is reported to create abundant defects/vacancies on the porous graphitic carbon nanosphere (CNS) with selective adsorption capability toward transition‐metal (TM) ions and innovatively utilize the created defects/vacancies to controllably anchor TM–SAs on the activated CNS via TMNx coordination bonds. The synthesized TM‐based SAECs (TM‐SAs@N‐CNS, TM: Cu, Fe, Co, and Ni) possess superior ORR electrocatalytic activities. The Cu‐SAs@N‐CNS demonstrates excellent ORR and oxygen evolution reaction (OER) bifunctional electrocatalytic activities and is successfully applied as a highly efficient air cathode material for the Zn–air battery. Importantly, it is proposed and validated that the N‐terminated vacancies on graphitic carbons are the preferable sites to anchor Cu‐SAs via a Cu(NC2)3(NC) coordination configuration with an excellent promotional effect toward ORR. This synthetic approach exemplifies the expediency of suitable defects/vacancies creation for the fabrication of high‐performance TM‐based SAECs, which can be implemented for the synthesis of other carbon‐supported SAECs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call