Abstract
Circulating tumor cells (CTCs), as a type of tumor, have attracted wide attention because of their characteristics of shedding from the primary tumor and spreading to other tissues and organs through peripheral blood. The circulating tumor DNA (ctDNA), the DNA released by CTCs and other tumor cells into the peripheral blood, was considered as a promising detection substance for clinical application. By utilizing the biocompatibility of red blood cells to realize the attachment of tetrahedral DNA (TDN), as well as the specific target recognition ability of TDN to enable efficient recognition of targets, a biocompatible electrochemical biosensor for effective and rapid detection of ctDNA was developed using methylene blue (MB) as the signal probe. The current signal and the logarithm of ctDNA concentration were linearly correlated in the range from 1 fM to 100 pM with the detection limit of 0.66 fM. With high specificity, the TDN-based biosensor can detect ctDNA efficiently in the real biological environment such as serum, which provided a potential opportunity for the early clinical diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.