Abstract

The demand for developing high-efficiency multifunctional electrocatalysts with a long-term stability rapidly increases for achieving the commercialization of sustainable hydrogen (H2) production via cost-effective water electrolysis systems. This study describes single-phase metal-rich nickel phosphide (Ni12P5)-incorporated carbon composites for a highly efficient water-splitting system. The distinct Ni12P5 is anchored in nitrogen (N)- and phosphorus (P)-rich carbon matrices (Ni12P5@N,P-C); the creation of the matrices entails a facile hydrothermal-followed pyrolysis treatment to explore their bifunctional activities in the water-splitting system. Owing to the superior activity of the rich Ni (δ+) component for the production of molecular oxygen and that of P (δ−)and N species in the carbon framework for hydrogen adsorption, the optimized Ni12P5@N,P-C composites contribute effectively toward both high oxygen evolution and hydrogen evolution reactions. Consequently, the Ni12P5@N,P-C composite-based two-electrode water-splitting system shows a low operating potential of 1.57 V at 10 mA cm–2 and achieves the commercially required high current density of 500 mA cm–2 at a stable potential of 2 V. The functionalization of composite electrocatalysts based on strategical engineering and the intrusion of multiple active sites can help develop enhanced electrochemical energy systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.