Abstract

A magnetically separable heterogeneous nanocatalyst was obtained by anchoring a terpyridine-based Mo(VI) complex on modified MnFe2O4 nanoparticles and characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and diffuse reflectance spectroscopies (DRS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis. The catalytic activity of the supported molybdenum based catalyst was evaluated in the selective epoxidation of various olefins (cyclooctene, limonene, 1-dodecane, 1-heptene, styrene, 1-indene, α-pinene, cyclohexene) with tert-butyl hydroperoxide (TBHP) as an oxidant under solvent-free conditions. This nanocatalyst was easily separated by using an external magnetic field and reused consecutively at least five times with no significant loss in selectivity and catalytic activity. The short reaction time, simple preparation, high conversion, good physicochemical stability and magnetic recycling of the catalysts are beneficial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.