Abstract
The preparation of the binary metal NiCe-based catalysts involved a 2-step protocol, the ceria was first coated on SiO2 which was then utilized to disperse Ni nanoparticles. Various techniques including N2 adsorption/desorption, ICP-OES, XRD, HRTEM, XPS, H2-chemisorption, H2-TPR, NH3-TPD, and TG etc. were performed to study the microstructure, redox, acid property and deactivation. The results revealed that CeO2 and metallic Ni were well dispersed on the support surface, the synergistic effect between the two metal species was conserved well. The content of CeO2 had considerable effects on redox and metallic properties rather than the acidic property. The dispersion of metallic Ni played a dominant role in promoting the catalytic activity. The levulinic acid conversion attained 84.0 % with a γ-valerolactone selectivity of 98.8 % on Ni/SiO2@2CeO2 sample with the highest dispersion of 9.8 %. The amorphous CeO2 suppressed the sintering of metallic Ni nanoparticles and improved the coke resistance, leading to better catalytic activity within 20 h time on stream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.