Abstract

Here in this study, a novel ternary CuS/HKUST‒1/Ni(acac)2 nano photocatalyst (CSHK‒Ni) was developed through a facile modification of HKUST‒1 MOF with Ni(acac)2 metal complex and by immobilizing CuS into the metal-organic framework (MOF). The incorporation of CuS, a narrow bandgap semiconductor, is anticipated to allow easy excitation by visible-light and improve the photocatalytic potential of the formulated catalyst which is validated by the decrease in the bandgap energy from 3.10 eV of pristine MOF to 2.19 eV. Moreover, the anchoring of the metal complex improves the light harvesting behavior by increased conjugation. Photoluminescence studies provided evidence of the effective separation of the photoinduced charge-carriers, reducing the rate of recombination and enhancing the photocatalytic potential of the CSHK‒Ni nanocomposite. The engineered catalyst displayed remarkable efficiency in the degradation of nitroimidazole containing antibiotics, Tinidazole (TNZ) and Metronidazole (MTZ), via H2O2 assisted AOP achieving a maximum photocatalytic efficiency of 95.87 ± 1.64% and 97.95 ± 1.33% in just 30 min under irradiation of visible light at optimum reaction conditions. The possible degradation pathway was elucidated based on the identification of ROS and degradation intermediates via HR‒LCMS and quenching experiments. Meanwhile, the chemical oxygen demand (COD) and total organic carbon (TOC) removal were also examined, encompassing the discussing of various aspects including reaction conditions, influence of various oxidizing agents, competing species and dissolved organic substrates present in the wastewater, marking the novelty of the study. This research elucidated the role of the CSHK‒Ni nanocomposite as an interesting photocatalyst in the elimination of emerging nitroimidazole containing pharmaceutical pollutant under visible-light exposure, presenting an exciting novel avenue for a cleaner and greener environment in the days to come.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.