Abstract

The alignment of liquid crystals on surfaces plays a central role in optimizing their performances. In this work, a cutting-edge nano-lithography-based method to control the local orientation of a thermotropic liquid crystal is applied to easily available commercial standard materials and evaluated. Parallel nanogrooves on a substrate, created through 3D nanoprinting in a negative-tone photoresin optimized for two-photon polymerization are used for this purpose. Azimuthal anchoring energies of the order from 10−6 J/m2 to 10−5 J/m2 are found, depending on the spacing, width and depth of the grooves. In part, these values are larger than those reported previously for another photopolymer. Both uniform alignment and spatial patterns of different alignment directions can be realized. Electro-optic studies confirm the suitability of the method for electrically addressable photonic applications and indicate strong polar anchoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call