Abstract

Current anchor-free object detectors do not rely on anchors and obtain comparable accuracy with anchor-based detectors. However, anchor-free object detectors that adopt a single-level feature map and lack a feature pyramid network (FPN) prior information about an object’s scale; thus, they insufficiently adapt to large object scale variation, especially for autonomous driving in complex road scenes. To address this problem, we propose a divide-and-conquer solution and attempt to introduce some prior information about object scale variation into the model when maintaining a streamlined network structure. Specifically, for small-scale objects, we add some dense layer jump connections between the shallow high-resolution feature layers and the deep high-semantic feature layers. For large-scale objects, dilated convolution is used as an ingredient to cover the features of large-scale objects. Based on this, a scale adaptation module is proposed. In this module, different dilated convolution expansion rates are utilized to change the network’s receptive field size, which can adapt to changes from small-scale to large-scale. The experimental results show that the proposed model has better detection performance with different object scales than existing detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.