Abstract

To date, the phylum Bacteroidetes comprises more than 1,500 described species with diverse ecological roles. However, there is little understanding of archetypal Bacteroidetes traits at a genomic level. In this study, a representative set of 89 Bacteroidetes genomes was compiled, and pairwise reciprocal best-match gene comparisons and gene syntenies were used to identify common traits that allowed Bacteroidetes evolution and adaptive radiation to be traced. The type IX secretion system (T9SS) was highly conserved among all studied Bacteroidetes. Class-level comparisons furthermore suggested that the ACIII-caa3COX super-complex evolved in the ancestral aerobic bacteroidetal lineage, and was secondarily lost in extant anaerobic Bacteroidetes. Another Bacteroidetes-specific respiratory chain adaptation was the sodium-pumping Nqr complex I that replaced the ancestral proton-pumping complex I in marine species. T9SS plays a role in gliding motility and the acquisition of complex macro-molecular organic compounds, and the ACIII-caa3COX super-complex allows effective control of electron flux during respiration. This combination likely provided ancestral Bacteroidetes with a decisive competitive advantage to effectively scavenge, uptake and degrade complex organic molecules, and therefore has played a pivotal role in the successful adaptive radiation of the phylum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.