Abstract

Ancestral sequence reconstruction (ASR) is the calculation of ancient protein sequences on the basis of extant ones. It is most powerful in combination with the experimental characterization of the corresponding proteins. Such analyses allow for the study of problems that are otherwise intractable. For example, ASR has been used to characterize ancestral enzymes dating back to the Paleoarchean era and to deduce properties of the corresponding habitats. In addition, the historical approach underlying ASR enables the identification of amino acid residues key to protein function, which is often not possible by only comparing extant proteins. Along these lines, residues responsible for the spectroscopic properties of protein pigments were identified as well as residues determining the binding specificity of steroid receptors. Further applications are studies related to the longevity of mutations, the contribution of gene duplications to enzyme functionalization, and the evolution of protein complexes. For these applications of ASR, we discuss recent examples; moreover, we introduce the basic principles of the underlying algorithms and present state-of-the-art protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.