Abstract

Stabilizing enzymes from mesophiles of industrial interest is one of the greatest challenges of protein engineering. The ancestral mutation method, which introduces inferred ancestral residues into a target enzyme, has previously been developed and used to improve the thermostability of thermophilic enzymes. In this report, we studied the ancestral mutation method to improve the chemical and thermal stabilities of Phanerochaete chrysosporium lignin peroxidase (LiP), a mesophilic fungal enzyme. A fungal ancestral LiP sequence was inferred using a phylogenetic tree comprising Basidiomycota and Ascomycota fungal peroxidase sequences. Eleven mutant enzymes containing ancestral residues were designed, heterologously expressed in Escherichia coli and purified. Several of these ancestral mutants showed higher thermal stabilities and increased specific activities and/or kcat/KM than those of wild-type LiP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.