Abstract

The hallmark of topological phases is their robust boundary signature whose intriguing properties---such as the one-way transport on the chiral edge of a Chern insulator and the sudden disappearance of surface states forming open Fermi arcs on the surfaces of Weyl semimetals---are impossible to realize on the surface alone. Yet, despite the glaring simplicity of non-interacting topological bulk Hamiltonians and their concomitant energy spectrum, the detailed study of the corresponding surface states has essentially been restricted to numerical simulation. In this work, however, we show that exact analytical solutions of both topological and trivial surface states can be obtained for generic tight-binding models on a large class of geometrically frustrated lattices in any dimension without the need for fine-tuning of hopping amplitudes. Our solutions derive from local constraints tantamount to destructive interference between neighboring layer lattices perpendicular to the surface and provide microscopic insights into the structure of the surface states that enable analytical calculation of many desired properties. We illustrate our general findings on a large number of examples in two and three spatial dimensions. Notably, we derive exact chiral Chern insulator edge states on the spin orbit-coupled kagome lattice, and Fermi arcs relevant for various recently synthesized pyrochlore iridate slabs. Remarkably, each of the pyrochlore slabs exhibit Fermi arcs although only the ones with a magnetic one-in-three-out configuration feature bulk Weyl nodes in realistic parameter regimes. Our approach furthermore signal the absence of topological surface states, which we illustrate for a class of models akin to the trivial surface of Hourglass materials KHg$X$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call