Abstract

Abstract A method of eddy structure decomposition is proposed to detect how low-frequency flow associated with the North Atlantic Oscillation (NAO) organizes systematically synoptic eddy (SE) activity to generate in-phase and upstream feedbacks. In this method, a statistical eddy streamfunction (SES) field, defined by the three-point covariance of synoptic-scale streamfunction, is introduced to characterize spatiotemporal SE flow structures. The SES field is decomposed into basic and anomalous parts to represent the climatological SE flow structure and its departure. These two parts are used to calculate the basic and anomalous eddy velocity, eddy vorticity, and thus eddy vorticity flux fields, in order to elucidate those two SE feedbacks onto the NAO. This method is validated by the fact that the observed anomalous eddy vorticity flux field can be reproduced well by two linear terms: the basic eddy velocity field multiplied by anomalous eddy vorticity field and the anomalous eddy velocity field multiplied by basic eddy vorticity field. With this method, it is found that, in the positive and negative phases, the NAO flow tends to induce two different types of anomalous SE flow structure, which are largely responsible for generating the net meridional and zonal eddy vorticity fluxes that, in return, feed back onto the NAO. The two processes that are related to these two different types dominate in the in-phase and upstream feedbacks, which are delineated conceptually into two kinematic mechanisms associated with zonal-slanting and meridional-shifting changes in the SE structure. The present observational evidence supports the theory of eddy-induced instability for low-frequency variability and also provides insights into the reason for the asymmetry between the SE feedbacks onto the two NAO phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call