Abstract

The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact that, near equilibrium, particle transport should occur down the gradient of the chemical potential. This yields Fick's law with two additional advantages. First, splitting the chemical potential into ‘mechanical’ and ‘chemical’ contributions shows how transport and mechanics are linked through the diffusivity–mobility relationship. Second, splitting the chemical potential into entropic and energetic contributions discloses the respective roles of entropy maximization and energy minimization in driving diffusion. The paper addresses first unary diffusion, where there is only one mobile species in an immobile medium, and next turns to binary diffusion, where two species are mobile with respect to each other in a fluid medium. The interrelationship between unary and binary diffusivities is brought out and it is shown how binary diffusion reduces to unary diffusion in the limit of high dilution of one species amidst the other one. Self- and mutual diffusion are considered and contrasted within the thermodynamic framework; self-diffusion is a time-dependent manifestation of the Gibbs paradox of mixing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call