Abstract
The decline of several of the world's largest deltas has spurred interest in expensive coastal restoration projects to make these economically and ecologically vital regions more sustainable. The success of these projects depends, in part, on our understanding of how delta plains evolve over time scales longer than the instrumental record. Building on a new set of optically stimulated luminescence ages, we demonstrate that a large portion (~10,000 km2) of the late Holocene river-dominated Mississippi Delta grew in a radially symmetric fashion for almost a millennium before abandonment. Sediment was dispersed by deltaic distributaries that formed by means of bifurcations at the coeval shoreline and remained active throughout the life span of this landform. Progradation rates (100 to 150 m/year) were surprisingly constant, producing 6 to 8 km2 of new land per year. This shows that robust rates of land building were sustained under preindustrial conditions. However, these rates are several times lower than rates of land loss over the past century, indicating that only a small portion of the Mississippi Delta may be sustainable in a future world with accelerated sea-level rise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.