Abstract

As GPUs make headway in the computing landscape spanning mobile platforms, supercomputers, cloud and virtual desktop platforms, supporting concurrent execution of multiple applications in GPUs becomes essential for unlocking their full potential. However, unlike CPUs, multi-application execution in GPUs is little explored. In this paper, we study the memory system of GPUs in a concurrently executing multi-application environment. We first present an analytical performance model for many-threaded architectures and show that the common use of misses-per-kilo-instruction (MPKI) as a proxy for performance is not accurate without considering the bandwidth usage of applications. We characterize the memory interference of applications and discuss the limitations of existing memory schedulers in mitigating this interference. We extend the analytical model to multiple applications and identify the key metrics to control various performance metrics. We conduct extensive simulations using an enhanced version of GPGPU-Sim targeted for concurrently executing multiple applications, and show that memory scheduling decisions based on MPKI and bandwidth information are more effective in enhancing throughput compared to the traditional FR-FCFS and the recently proposed RR FR-FCFS policies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.