Abstract

The authors explore the division of labor between the basal ganglia-dopamine (BG-DA) system and the orbitofrontal cortex (OFC) in decision making. They show that a primitive neural network model of the BG-DA system slowly learns to make decisions on the basis of the relative probability of rewards but is not as sensitive to (a) recency or (b) the value of specific rewards. An augmented model that explores BG-OFC interactions is more successful at estimating the true expected value of decisions and is faster at switching behavior when reinforcement contingencies change. In the augmented model, OFC areas exert top-down control on the BG and premotor areas by representing reinforcement magnitudes in working memory. The model successfully captures patterns of behavior resulting from OFC damage in decision making, reversal learning, and devaluation paradigms and makes additional predictions for the underlying source of these deficits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.