Abstract

The thoracic salivary gland of the worker honeybee was investigated by dissection, light microscopy, scanning electron microscopy, and transmission electron microscopy. The glands are paired and each lateral half consists of two parts, a smaller external and a larger internal lobe. The lobes are composed of densely packed secretory tubes and ducts, the tubes of which often show ramifications. A reservoir is packed within the anterior medial part of the gland. The secretory tubes are composed of two types of cells, secretory cells, which are most frequent, and parietal cells. Secretory cells are characterized by a basal labyrinth, abundant rough endoplasmic reticulum, dark secretory vesicles, light vesicles of different sizes, and apical microvilli. Parietal cells are smaller and have a characteristically lobed nucleus and no secretory vesicles. Between the cells there are intercellular canaliculi. In the center of each tube there is an extracellular space with a central cuticular channel. The abundance of rough endoplasmic reticulum and the rare occurrence of smooth endoplasmic reticulum implies a saliva with proteins but rarely with pheromones. Between the secretory tubes there are frequently neuronal profiles which are partly in contact with the secretory cells. Thus a nervous control of this gland is, in contrast to previous investigations, clearly demonstrated. The axonal endings contain dark neurosecretory vesicles as well as light synaptic vesicles. Large parts of the glands are surrounded by a thin tissue sheath which has a smooth surface towards the secretory tubes and shows irregular protrusions towards the outer side. This sheath is considered to be a tracheal air sac, and due to its large extension is probably of importance for the hemolymph flow in the thorax.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.