Abstract

Staining for the mitochondrial enzyme cytochrome oxidase reveals an array of dense regions (blobs) in the primate primary visual cortex. They are most obvious in the upper layers, 2 and 3, but can also be seen in layers 4B, 5, and 6, in register with the blobs in layers 2 and 3. We compared cells inside and outside blobs in macaque and squirrel monkeys, looking at their physiological responses and anatomical connections. Cells within blobs did not show orientation selectivity, whereas cells between blobs were highly orientation selective. Receptive fields of blob cells had circular symmetry and were of three main types, Broad-Band Center-Surround, Red-Green Double-Opponent, and Yellow-Blue Double-Opponent. Double-Opponent cells responded poorly or not at all to white light in any form, or to diffuse light at any wavelength. In contrast to blob cells, none of the cells recorded in layer 4C beta were Double-Opponent: like the majority of cells in the parvocellular geniculate layers, they were either Broad-Band or Color-Opponent Center-Surround, e.g., red-on-center green-off-surround. To our surprise cells in layer 4C alpha were orientation selective. In tangential penetrations throughout layers 2 and 3, optium orientation, when plotted against electrode position, formed long, regular, usually linear sequences, which were interrupted but not perturbed by the blobs. Staining area 18 for cytochrome oxidase reveals a series of alternating wide and narrow dense stripes, separated by paler interstripes. After small injections of horseradish peroxidase into area 18, we saw a precise set of connections from the blobs in area 17 to thin stripes in area 18, and from the interblob regions in area 17 to interstripes in area 18. Specific reciprocal connections also ran from thin stripes to blobs and from interstripes to interblobs. We have not yet determined the area 17 connections to thick stripes in area 18. In addition, within area 18 there are stripe-to-stripe and interstripe-to-interstripe intrinsic connections. These results suggest that a system involved in the processing of color information, especially color-spatial interactions, runs parallel to and separate from the orientation-specific system. Color, encoded in three coordinates by the major blob cell types, red-green, yellow-blue, and black-white, can be transformed into the three coordinates, red, green, and blue, of the Retinex algorithm of Land.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call