Abstract

We examined the anatomy of the nasal cavity and forebrain in the axolotl (Ambystoma mexicanum) to determine whether the olfactory and vomeronasal systems are present in this neotenic aquatic salamander. The current study was motivated by two considerations: (a) little is known of the anatomy of the vomeronasal system in aquatic vertebrates, and (b) the presence of both olfactory and vomeronasal systems in larval amphibians has broad implications for the evaluation of these systems in vertebrates. From cresyl-violet-stained sections of snouts we determined that the nasal cavity of axolotls is much like that of terrestrial salamanders. The main chamber of the nasal cavity contains an olfactory epithelium, which is confined to grooves between longitudinal ridges of connective tissue covered in a nonsensory epithelium which lacks goblet cells. Using transmission electron microscopy, we found morphologically distinct olfactory receptor cells: many receptor cells terminate in microvillar dendrites, and fewer terminate in motile cilia with the 9 + 2 microtubule array typical of vertebrate olfactory receptor cells. The ciliated and microvillar cells occur in clusters with little intermingling. Horseradish peroxidase labeling revealed that axons of the olfactory receptor cells terminate in large glomeruli in the main olfactory bulb at the rostral end of the telencephalon. Lateral to the main chamber of the nasal cavity is a diverticulum that is entirely lined with a vomeronasal epithelium containing basal cells, microvillar receptor cells, sustentacular cells that lack specialized processes on the apical surface, and large ciliated cells that may function to move fluid across the vomeronasal epithelium. Unlike the olfactory epithelium, the vomeronasal epithelium lacks Bowman's glands. Using horseradish peroxidase, we determined that the axons of the vomeronasal receptor cells project to the accessory olfactory bulb, a distinct structure dorsal and caudal to the main olfactory bulb. The presence of both olfactory and vomeronasal systems in axolotls and other neotenic salamanders implies that both systems are pleiomorphic in larval amphibians; we therefore suggest that the vomeronasal system may not have originated as an adaptation to terrestrial life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.