Abstract

Discusses the inclusion of anatomical constraints and anisotropy in static Electrical Impedance Tomography (EIT) using a two-step approach to EIT. In the first step, the boundaries between regions of different conductivities are anatomically constrained using Magnetic Resonance Imaging (MRI) data. In the second step, the conductivity values in different regions are determined. Anisotropic conductivity regions are included to allow better modeling of the muscle regions (e.g., skeletal muscle) which exhibit a greater conductivity in the direction parallel to the muscle fiber. This two-step approach is used to reconstruct the conductivity profile of a canine torso, illustrating its potential application in extracting conductivity values for bioelectric modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.