Abstract

Mammalian cervical count has been fixed at seven for more than 200 million years. The rare exceptions to this evolutionary constraint have intrigued anatomists since the time of Cuvier, but the developmental processes that generate them are unknown. Here we evaluate competing hypotheses for the evolutionary origin of cervical variants in Bradypus and Choloepus, tree sloths that have broken the seven cervical vertebrae barrier independently and in opposite directions. Transitional and mediolaterally disjunct anatomy characterizes the cervicothoracic vertebral boundary in each genus, although polarities are reversed. The thoracolumbar, lumbosacral, and sacrocaudal boundaries are also disrupted, and are more extreme in individuals with more extreme cervical counts. Hypotheses of homologous, homeotic, meristic, or associational transformations of traditional vertebral column anatomy are not supported by these data. We identify global homeotic repatterning of abaxial relative to primaxial mesodermal derivatives as the origin of the anomalous cervical counts of tree sloths. This interpretation emphasizes the strong resistance of the "rule of seven" to evolutionary change, as morphological stasis has been maintained primaxially coincident with the generation of a functionally longer (Bradypus) or shorter (Choloepus) neck.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.