Abstract

The fundamental neuronal substrates of the arterial baroreceptor reflex have been elucidated by combining anatomical, neurophysiological, and pharmacological approaches. A serial pathway between neurons located in the nuclei of the solitary tract (NTS), the caudal ventrolateral medulla (CVL), and the rostral ventrolateral medulla (RVL) plays a critical role in inhibition of sympathetic outflow following stimulation of baroreceptor afferents. In this paper, we summarize our studies using tract-tracing and electron microscopic immunocytochemistry to define the potential functional sites for synaptic transmission within this circuitry. The results are discussed as they relate to the literature showing: (1) baroreceptor afferents excite second-order neurons in NTS through the release of glutamate; (2) these NTS neurons in turn send excitatory projections to neurons in the CVL; (3) GABAergic CVL neurons directly inhibit RVL sympathoexcitatory neurons; and (4) activation of this NTS→CVL→RVL pathway leads to disfacilitation of sympathetic preganglionic neurons by promoting withdrawal of their tonic excitatory drive, which largely arises from neurons in the RVL. Baroreceptor control may also be regulated over direct reticulospinal pathways exemplified by a newly recognized sympathoinhibitory region of the medulla, the gigantocellular depressor area. This important autonomic reflex may also be influenced by parallel, multiple, and redundant networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.