Abstract
Several digital reference objects (DROs) for DCE-MRI have been created to test the accuracy of pharmacokinetic modeling software under a variety of different noise conditions. However, there are few DROs that mimic the anatomical distribution of voxels found in real data, and similarly few DROs that are based on both malignant and normal tissue. We propose a series of DROs for modeling Ktrans and Ve derived from a publically-available RIDER DCEMRI dataset of 19 patients with gliomas. For each patient’s DCE-MRI data, we generate Ktrans and Ve parameter maps using an algorithm validated on the QIBA Tofts model phantoms. These parameter maps are denoised, and then used to generate noiseless time-intensity curves for each of the original voxels. This is accomplished by reversing the Tofts model to generate concentration-times curves from Ktrans and Ve inputs, and subsequently converting those curves into intensity values by normalizing to each patient’s average pre-bolus image intensity. The result is a noiseless DRO in the shape of the original patient data with known ground-truth Ktrans and Ve values. We make this dataset publically available for download for all 19 patients of the original RIDER dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.