Abstract

With micro-computed tomography techniques, using the single-distance phase-retrieval algorithm phase contrast, we reconstructed enhanced rendered images of soft tissues of Aedes aeqypti fourth instar larvae after Bti treatment. In contrast to previous publications based on conventional microscopy, either optical or electron microscopy, which were limited to partial studies, mostly in the form of histological sections, here we show for the first time the effects of Bti on the complete internal anatomy of an insect. Using 3D rendered images it was possible to study the effect of the bacterium in tissues and organs, not only in sections but also as a whole. We compared the anatomy of healthy larvae with the changes undergone in larvae after being exposed to Bti (for 30 min, 1 h and 6 h) and observed the progressive damage that Bti produce. Damage to the midgut epithelia was confirmed, with progressive swelling of the enterocytes, thickening epithelia, increase of the vacuolar spaces and finally cell lysis, producing openings in the midgut walls. Simultaneously, the larvae altered their motility, making it difficult for them to rise to the surface and position the respiratory siphon properly to break surface tension and breathe. Internally, osmotic shock phenomena were observed, resulting in a deformation of the cross-section shape, producing the appearance of a wide internal space between the cuticle and the internal structures and a progressive collapse of the tracheal trunks. Taken together, these results indicate the death of the larvae, not by starvation as a consequence of the destruction of the epithelia of the digestive tract as previously stated, but due to a synergic catastrophic multifactor process in addition to asphyxia due to a lack of adequate gas exchange.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call