Abstract

BackgroundMachine learning has led to several endoscopic studies about the automated localization of digestive lesions and prediction of cancer invasion depth. Training and validation dataset collection are required for a disease in each digestive organ under a similar image capture condition; this is the first step in system development. This data cleansing task in data collection causes a great burden among experienced endoscopists. Thus, this study classified upper gastrointestinal (GI) organ images obtained via routine esophagogastroduodenoscopy (EGD) into precise anatomical categories using AlexNet. MethodIn total, 85,246 raw upper GI endoscopic images from 441 patients with gastric cancer were collected retrospectively. The images were manually classified into 14 categories: 0) white-light (WL) stomach with indigo carmine (IC); 1) WL esophagus with iodine; 2) narrow-band (NB) esophagus; 3) NB stomach with IC; 4) NB stomach; 5) WL duodenum; 6) WL esophagus; 7) WL stomach; 8) NB oral–pharynx–larynx; 9) WL oral–pharynx–larynx; 10) WL scaling paper; 11) specimens; 12) WL muscle fibers during endoscopic submucosal dissection (ESD); and 13) others. AlexNet is a deep learning framework and was trained using 49,174 datasets and validated using 36,072 independent datasets. ResultsThe accuracy rates of the training and validation dataset were 0.993 and 0.965, respectively. ConclusionsA simple anatomical organ classifier using AlexNet was developed and found to be effective in data cleansing task for collection of EGD images. Moreover, it could be useful to both expert and non-expert endoscopists as well as engineers in retrospectively assessing upper GI images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.