Abstract

In this study of cytomegalovirus (CMV)-infected fetuses with first-trimester seroconversion, we aimed to evaluate the detection of brain abnormalities using magnetic resonance imaging (MRI) and neurosonography (NSG) in the third trimester, and compare the grading systems of the two modalities. We also evaluated the feasibility of routine use of diffusion-weighted imaging (DWI) fetal MRI and compared the regional apparent diffusion coefficient (ADC) values between CMV-infected fetuses and presumed normal, non-infected fetuses in the third trimester. This was a retrospective review of MRI and NSG scans in fetuses with confirmed first-trimester CMV infection performed between September 2015 and August 2019. Brain abnormalities were recorded and graded using fetal MRI and NSG grading systems to compare the two modalities. To investigate feasibility of DWI, a four-point rating scale (poor, suboptimal, good, excellent) was applied to assess the quality of the images. Quantitative assessment was performed by placing a freehand drawn region of interest in the white matter of the frontal, parietal, temporal and occipital lobes and the basal ganglia, pons and cerebellum to calculate ADC values. Regional ADC measurements were obtained similarly in a control group of fetuses with negative maternal CMV serology in the first trimester, normal brain findings on fetal MRI and normal genetic testing. Fifty-three MRI examinations of 46 fetuses with confirmed first-trimester CMV infection were included. NSG detected 24 of 27 temporal cysts seen on MRI scans, with a sensitivity of 78% and an accuracy of 83%. NSG did not detect abnormal gyration visible on two (4%) MRI scans. Periventricular calcifications were detected on two MRI scans compared with 10 NSG scans. While lenticulostriate vasculopathy was detected on 11 (21%) NSG scans, no fetus demonstrated this finding on MRI. MRI grading correlated significantly with NSG grading of brain abnormalities (P < 0.0001). Eight (15%) of the DWI scans in the CMV cohort were excluded from further analysis because of insufficient quality. The ADC values of CMV-infected fetuses were significantly increased in the frontal (both sides, P < 0.0001), temporal (both sides, P < 0.0001), parietal (left side, P = 0.0378 and right side, P = 0.0014) and occipital (left side, P = 0.0002 and right side, P < 0.0001) lobes and decreased in the pons (P = 0.0085) when compared with non-infected fetuses. The ADC values in the basal ganglia and the cerebellum were not significantly different in CMV-infected fetuses compared with normal controls (all P > 0.05). Temporal and frontal ADC values were higher in CMV-infected fetuses with more severe brain abnormalities compared to fetuses with mild abnormalities. Ultrasound and MRI are complementary during the third trimester in the assessment of brain abnormalities in CMV-infected fetuses, with a significant correlation between the grading systems of the two modalities. On DWI in the third trimester, the ADC values in several brain regions are abnormal in CMV-infected fetuses compared with normal controls. Furthermore, they seem to correlate in the temporal area and, to a lesser extent, frontal area with the severity of brain abnormalities associated with CMV infection. Larger prospective studies are needed for further investigation of the microscopic nature of diffusion abnormalities and correlation of different imaging findings with postnatal outcome. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.