Abstract

Bulky implants may lead to symptomatic soft tissue irritation after open reduction and internal fixation of radial head and neck fractures. The purpose of our study was to compare the anatomic fit of precontoured radial head plates. We stripped 22 embalmed human cadaveric radiuses of soft tissues. We investigated 6 radial head plates: (1) the Medartis radial head buttress plate (MBP), (2) the Medartis radial head rim plate (MRP), (3) the Synthes radial neck plate (SNP), (4) the Synthes radial head plate (SHP), (5) the Acumed radial head plate (AHP), and (6) the Wright radial head plate (WHP). Each plate was applied to each radial head at the place of best fit within the safe zone. We tested 4 parameters of anatomic fit: (1) plate-to-bone distance, (2) plate contact judged by 3 different observers, (3) pin-subchondral zone distance, and (4) plate-to-bone contact after adjustment of the plates. The MBP and MRP showed the lowest profile by objective measurements, the SNP and AHP had a moderate profile, and the SHP and WHP demonstrated the bulkiest profile. The subjective assessments also demonstrated the best fit for the MBP, a good fit for the SNP, a moderate fit for the MRP and AHP, and a poor fit for the SHP and WHP. The MBP, MRP, and AHP could always provide pin-subchondral zone contact, unlike the SHP, SNP, and WHP. After bending, significant improvement of plate-to-bone distance could only be seen for the MBP, MRP, and WHP. The ranking among plates remained the same except for the WHP, which showed a significantly lower plate-to-bone distance than the SHP. Currently available radial head implants are heterogeneous. The MBP and MRP showed the lowest profile and best anatomic fit. Owing to the complex radial head anatomy, to date there is no one radial head plate that perfectly fits all radial heads. Conformance of existing plates to the radial head and neck is not perfect. Careful plate selection and modification, when necessary, may minimize interference of this hardware with the surrounding soft tissues and facilitate recovery of motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.