Abstract

Combinations of intra- and extra-articular procedures have been proposed for anterior cruciate ligament reconstruction with the aim of achieving an optimal control of translational and rotational knee laxities. Recently, the need for better reproducing the structural and functional behavior of the native anterior cruciate ligament led to the definition of anatomic double-bundle surgical approach. This study aimed to quantitatively verify whether the in vivo static and dynamic behavior obtained using over-the-top single-bundle with extra-articular tenodesis reconstruction was comparable to the results achieved by anatomic double-bundle approach. Thirty-five consecutive patients, with an isolated anterior cruciate ligament injury, were included in the study. Standard clinical laxities and pivot-shift test were quantified before and after anterior cruciate ligament reconstruction by means of a surgical navigation system dedicated to kinematic assessment; displacements of medial and lateral compartment during stress tests were also analyzed. Single-bundle with extra-articular tenodesis approach presented statistically better laxity reduction in varus/valgus stress test at full extension and in internal/external rotation at 90° of flexion; lateral plasty controlled better the lateral compartment during drawer test and varus/valgus stress test both at 0° and 30° of flexion and both the compartments during internal/external rotation at 90° of flexion. On the other hand, pivot-shift phenomenon was better controlled by anatomic double-bundle reconstruction. Both the reconstructions worked similarly for static knee laxity. The extra-articular procedure played an important role in better constraining the displacement of lateral tibial compartment, whereas the anatomic double-bundle reconstruction better restored the dynamic behavior of knee joint highlighted under pivot-shift stress test. Case series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.