Abstract

Early visual processing is surprisingly flexible even in the adult brain. This flexibility involves both long-term structural plasticity and online adaptations conveyed by top-down feedback. Although this view is supported by rich evidence from both human behavioral studies and invasive electrophysiology in nonhuman models, it has proven difficult to close the gap between species. In particular, it remains debated whether noninvasive measures of neural activity can capture top-down modulations of the earliest stages of processing in the human visual cortex. We previously reported modulations of retinotopic C1, the earliest component of the human visual evoked potential. However, these effects were selectively observed in the upper visual field (UVF). Here we test whether this asymmetry is linked to an interaction between differences in spatial resolution across the visual field and the specific stimuli used in previous studies. We measured visual evoked potentials in response to task-irrelevant, high-contrast textures of different densities in a comparatively large sample of healthy volunteers (N = 31) using high-density electroencephalogram. Our results show differential response profiles for upper and lower hemifields, with UVF responses saturating at higher stimulus densities. In contrast, lower visual field responses did not increase, and even showed a tendency toward a decrease at the highest density tested. We propose that these findings reflect feature- and task-specific pooling of signals from retinotopic regions with different sensitivity profiles. Such complex interactions between anatomic and functional asymmetries need to be considered to resolve whether human early visual cortex activity is modulated by top-down factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call