Abstract
Anatase TiO2 nanoparticles were successfully synthesized by post-heat treatments of partially crystalline Ti and amorphous TiOx nanoparticles, respectively produced by inert gas condensation and subsequent oxidation. The nanoparticles condensed on a liquid-nitrogen containing cooling finger (sample LN) were identified to be partially crystalline Ti phase with ~10–20vol.% amorphous TiOx. On the other hand, those condensed on a room-temperature cooling finger (sample RT) were almost completely amorphous TiOx phase. Differential scanning calorimetry scan curves of as-oxidized samples were interpreted using Kissinger analysis, the non-isothermal kinetics, and activation energy for the anatase formation was determined as ~455 and 865kJ/mol for samples LN and RT, respectively. As-oxidized samples LN and RT were heat treated at 400°C for 2h, respectively (samples LN-H and RT-H). Samples LN-H and RT-H showed the onset of UV–visible light absorption near 400nm and the optical band gap of 3.12 and 3.21eV, respectively, corresponding to anatase. The sample LN-H showed faster photocatalytic decomposition of methylene blue and rhodamine B dyes compared to the sample RT-H due to high crystallinity of anatase and rutile phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.