Abstract

This paper proposes the experimental demonstration of an anapole-based cylindrical electromagnetic cloaking scheme. An anapole state is excited by arranging around a cylindrical metallic target vertical split-ring resonators, forming an equivalent surface admittance boundary condition able to suppress the scattering. Using Mie formalism and multipole scattering theory, we identify the actual reason behind the cloaking operation, characterizing the anapole condition by the scattering contributions from toroidal and electric dipole moments. Numerical results are verified using full-wave simulation softwares and subsequently validated with back-scattering measurements inside an anechoic chamber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call