Abstract

Butyrylcholinesterase (BChE), a serine hydrolase biochemically related to the cholinergic enzyme Acetylcholinesterase (AChE), is found in many mammalian tissues, such as serum and central nervous system, but its physiological role is still unclear. BChE is an important human plasma esterase, where it has detoxifying roles. Furthermore, recent studies suggest that brain BChE can have a role in Alzheimer’s disease (AD). The endocannabinoid arachidonoylethanolamide (anandamide) and other acylethanolamides (NAEs) are almost ubiquitary molecules and are physiologically present in many tissues, including blood and brain, where they show neuroprotective and anti-inflammatory properties. This paper demonstrates that they are uncompetitive (oleoylethanolamide and palmitoylethanolamide) or non competitive (anandamide) inhibitors of BChE (Ki in the range 1.32–7.48 nM). On the contrary, NAEs are ineffective on AChE kinetic features. On the basis of the X-ray crystallographic structure of human BChE, and by using flexible docking procedures, an hypothesis on the NAE-BChE interaction is formulated by molecular modeling studies. Our results suggest that anandamide and the other acylethanolamides studied could have a role in the modulation of the physiological actions of BChE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.