Abstract

Human anamorsin was implicated in cytosolic iron-sulfur (Fe/S) protein biogenesis. Here, the structural and metal-binding properties of anamorsin and its interaction with Mia40, a well-known oxidoreductase involved in protein trapping in the mitochondrial intermembrane space (IMS), were characterized. We show that (1), anamorsin contains two structurally independent domains connected by an unfolded linker; (2), the C-terminal domain binds a [2Fe-2S] cluster through a previously unknown cysteine binding motif in Fe/S proteins; (3), Mia40 specifically introduces two disulfide bonds in a twin CX(2)C motif of the C-terminal domain; (4), anamorsin and Mia40 interact through an intermolecular disulfide-bonded intermediate; and (5), anamorsin is imported into mitochondria. Hence, anamorsin is the first identified Fe/S protein imported into the IMS, raising the possibility that it plays a role in cytosolic Fe/S cluster biogenesis also once trapped in the IMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.