Abstract
Graphene-based reinforcements can enhance mechanical performances of composite structures by altering the distributions of graphene platelets (GPLs), which determines wave propagation characteristics. Dispersion behaviors of elastic waves in the nanocomposite annular plates are investigated in this work. Utilizing the modified micromechanical model and the rule of mixtures, four types of distribution patterns are considered to evaluate the effective material properties of the nanocomposites. Elastodynamic equations of wave motion are expressed and parameterized in the semi-analytical formulation based on Reddy’s higher-order shear deformation theory and the isogeometric analysis. Dispersion characteristics of the in-plane and out-of-plane wave modes are studied in detail. The cutoff frequencies are discussed in order to confirm the accuracy of the results. Besides, parametric studies are conducted to analyze the influences of distribution, weight fraction and size parameters of GPLs on phase-velocity and group-velocity curves of waves. The results indicate that the concentration of GPLs on the boundaries of composite plates can improve the propagation characteristics of wave modes. In the case of FG-V, there exists the interesting phenomenon of mode conversion. It is concluded that dispersion characteristics of elastic waves in nanocomposite annular plates can be flexibly modulated by changing significant parameters of the reinforcement GPLs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.