Abstract

Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.