Abstract
<p>The present work deals with the time series analysis of remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST). While many works have been published concerning the trends of nighttime and daytime LST at the regional or local scale, little attention has been paid to structural changes observed within the LST time series in various sub-periods. This could be of much interest not only for climate studies but also for unveiling the possible relation between natural disasters such as wildfires and global changes. In this work we tested the hypothesis of a constant trend in LST time series from 2000 to 2019 and highlighted the existence of periods with changing trends. The methodology was applied in an area of approximately 17.000 km<sup>2</sup> located in NE Greece and South Bulgaria. The nighttime and daytime LST time series data were initially subjected to a gap filling algorithm to account for missing values and were then aggregated at the catchment level. Furthermore, LST time series were analyzed using the Breaks For Additive Season and Trend (BFAST) method. Results indicated that an abrupt change in both nighttime and daytime LST trends was observed in all examined time series, indicating a transition from a decreasing LST regime from 2002 to 2006 to an abrupt increasing thereafter until today. An initial comparison with the existing inventory of wildfires in the area for the last 20 years indicated an increase of wildfire events which coincides with the LST breakpoint, indicating thus possible connections between rising LST and wildfire events.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.