Abstract

e19512 Background: Targeted therapy is an important treatment for chronic lymphocytic leukemia (CLL). However, optimal strategies for deploying small molecule inhibitors or antibody therapies in the real world are not well understood, largely due to a lack of outcomes data. We implemented a novel temporal phenotyping algorithm pipeline to derive lines of therapy (LOT) and disease progression in CLL patients. Here, the CLL treatment pattern and time to the next treatment (TTNT) were analyzed in real-world data (RWD) using patient electronic health records. Methods: We identified a CLL cohort with LOT from the Mount Sinai Data Warehouse (2003-2020). Each LOT consisted of either a single agent or combinations defined by NCCN CLL guidelines. We developed a natural language processing (NLP)-based temporal phenotyping approach to automatically identify the number of lines and therapeutic regimens. The sequence of treatment and time interval for each patient were derived from the systematic treatment data. Time to event analysis and multivariate (i.e., age, gender, race, other treatment patterns) Cox proportional hazard (CoxPH) models were used to analyze the patterns and predictors of TTNT. Results: Four hundred eleven CLL patients received 1 to 7 LOTs. Ibrutinib was the predominant 1st LOT (40.8% of patients) followed by anti-CD20-based antibody therapies and chemotherapy in 30.6 and 19.2% of patients, respectively, followed by Acalabrutinib, Venetoclax, and Idelalisib in 3.4, 2.7, and 0.7% of patients, respectively (Table 1). The 2nd to 5th LOT showed the same or similar trends. We next analyzed the TTNT in the 1st line of each therapeutic class. Acalabrutinib resulted in a longer median TTNT than Ibrutinib. Both Acalabrutinib and Ibrutinib showed longer TTNT compared to Venetoclax (median TTNTs were 742 and 598 vs. 373 days: HR = 0.23, p=0.015 and HR = 0.48, p=0.03, respectively). In addition, patients with age equal to or older than 65 showed longer TNNT (HR=0.16, p=0.016). Conclusions: Our result shows the potential of RWD usage in clinical decision making as real-world evidence reported here is consistent with results derived from clinical trial data. Linking this study to genetic data and other covariates affecting treatment outcomes may provide additional insights into the optimal sequences of the targeted therapies in CLL. Table 1: Therapeutic class and patient numbers (%) in each line.[Table: see text]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.