Abstract

Abstract The National Weather Service plays a critical role in alerting the public when dangerous weather occurs. Tornado warnings are one of the most publicly visible products the NWS issues given the large societal impacts tornadoes can have. Understanding the performance of these warnings is crucial for providing adequate warning during tornadic events and improving overall warning performance. This study aims to understand warning performance during the lifetimes of individual storms (specifically in terms of probability of detection and lead time). For example, does probability of detection vary based on if the tornado was the first produced by the storm, or the last? We use tornado outbreak data from 2008 to 2014, archived NEXRAD radar data, and the NWS verification database to associate each tornado report with a storm object. This approach allows for an analysis of warning performance based on the chronological order of tornado occurrence within each storm. Results show that the probability of detection and lead time increase with later tornadoes in the storm; the first tornadoes of each storm are less likely to be warned and on average have less lead time. Probability of detection also decreases overnight, especially for first tornadoes and storms that only produce one tornado. These results are important for understanding how tornado warning performance varies during individual storm life cycles and how upstream forecast products (e.g., Storm Prediction Center tornado watches, mesoscale discussions, etc.) may increase warning confidence for the first tornado produced by each storm. Significance Statement In this study, we focus on better understanding real-time tornado warning performance on a storm-by-storm basis. This approach allows us to examine how warning performance can change based on the order of each tornado within its parent storm. Using tornado reports, warning products, and radar data during tornado outbreaks from 2008 to 2014, we find that probability of detection and lead time increase with later tornadoes produced by the same storm. In other words, for storms that produce multiple tornadoes, the first tornado is generally the least likely to be warned in advance; when it is warned in advance, it generally contains less lead time than subsequent tornadoes. These findings provide important new analyses of tornado warning performance, particularly for the first tornado of each storm, and will help inform strategies for improving warning performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call