Abstract

The potential problem is one of the most important partial differential equations in engineering mathematics. A potential problem is a function that satisfies a given partial differential equation and particular boundary conditions. It is independent of time and involves only space coordinates, as in Poisson’s equation or the Laplace equation with Dirichlet, Neumann, or mixed conditions. When potential problems are very complex, both in their field variable variation and boundary conditions, they usually cannot be solved by analytical solutions. The element-free Galerkin (EFG) method is a promising method for solving partial differential equations on which the trial and test functions employed in the discretization process result from moving least-squares (MLS) interpolants. In this paper, by employing improved moving least-squares (IMLS) approximation, we derive the formulas for an improved element-free Galerkin (IEFG) method for three-dimensional potential problems. Because there are fewer coefficients in the IMLS approximation than in the MLS approximation, and in the IEFG method, fewer nodes are selected in the entire domain than in the conventional EFG method, the IEFG method should result in a higher computing speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.