Abstract

Due to the low computational efficiency of the Improved Element-Free Galerkin (IEFG) method, efficiently solving three-dimensional (3D) Laplace problems using meshless methods has been a longstanding research direction. In this study, we propose the Dimension Coupling Method (DCM) as a promising alternative approach to address this challenge. Based on the Dimensional Splitting Method (DSM), the DCM divides the 3D problem domain into a coupling of multiple two-dimensional (2D) problems which are handled via the IEFG method. We use the Finite Element Method (FEM) in the third direction to combine the 2D discretized equations, which has advantages over the Finite Difference Method (FDM) used in traditional methods. Our numerical verification demonstrates the DCM’s convergence and enhancement of computational speed without losing computational accuracy compared to the IEFG method. Therefore, this proposed method significantly reduces computational time and costs when solving 3D Laplace equations with natural or mixed boundary conditions in a dimensional splitting direction, and expands the applicability of the dimension splitting EFG method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call