Abstract

Non-pharmaceutical personal protective (NPP) measures such as face masks use, and hand and respiratory hygiene can be effective measures for mitigating the spread of aerosol/airborne diseases, such as COVID-19, in the absence of vaccination or treatment. However, the usage of such measures is constrained by their inherent perceived cost and effectiveness for reducing transmission risk. To understand the complex interaction of disease dynamics and individuals decision whether to adopt NPP or not, we incorporate evolutionary game theory into an epidemic model such as COVID-19. To compare how self-interested NPP use differs from social optimum, we also investigated optional control from a central planner’s perspective. We use Pontryagin’s maximum principle to identify the population-level NPP uptake that minimizes disease incidence by incurring the minimum costs. The evolutionary behavior model shows that NPP uptake increases at lower perceived costs of NPP, higher transmission risk, shorter duration of NPP use, higher effectiveness of NPP, and shorter duration of disease-induced immunity. Though social optimum NPP usage is generally more effective in reducing disease incidence than self-interested usage, our analysis identifies conditions under which both strategies get closer. Our model provides new insights for public health in mitigating a disease outbreak through NPP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.