Abstract

In this work we propose a mechanism to optimize the capacity of the main corridor within a railway network with a radial-backbone or X-tree structure. The radial-backbone (or X-tree) structure is composed of two types of lines: the primary lines that travel exclusively on the common backbone (main corridor) and radial lines which, starting from the common backbone, branch out to individual locations. We define possible line configurations as binary strings and propose operators on them for their analysis, yielding an effective algorithm for generating an optimal design and train frequencies. We test our algorithm on real data for the high speed line Madrid–Seville. A frequency plan consistent with the optimal capacity is then proposed in order to eliminate the number of transfers between lines as well as to minimize the network fleet size, determining the minimum number of vehicles needed to serve all travel demand at maximum occupancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.